A Comparison of Association Rule Discovery and Bayesian Network Causal Inference Algorithms to Discover Relationships in Discrete Data
نویسندگان
چکیده
Association rules discovered through attribute-oriented induction are commonly used in data mining tools to express relationships between variables. However, causal inference algorithms discover more concise relationships between variables, namely, relations of direct cause. These algorithms produce regressive structured equation models for continuous linear data and Bayes networks for discrete data. This work compares the effectiveness of causal inference algorithms with association rule induction for discovering patterns in discrete data.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملApplying Evolutionary Algorithms to Discover Knowledge from Medical Databases
Data mining has become an important research topic. The increasing use of computer results in an explosion of information. These data can be best used if the knowledge hidden can be uncovered. Thus there is a need for a way to automatically discover knowledge from data. In this paper, new approaches for knowledge discovery from two medical databases are investigated. Two different kinds of know...
متن کاملBeyond Understanding and Prediction: Data Mining for Action
Association analysis and prediction are two major tasks in data mining, and they represent two foremost objectives: data exploration for understanding and model construction for prediction. Data mining is known as a process to convert raw data to useful information --knowledge. However, what do we do with the knowledge discovered from data? We will need knowledge to enable actions, such as prev...
متن کاملA Comparison of Bayesian Network Learning Algorithms from Continuous Data
Learning a Bayesian network from data is an important problem in biomedicine for the automatic construction of decision support systems and inference of plausible causal relations. Most Bayesian network learning algorithms require discrete data; however discretization may impact the quality of the learned structure. In this project, we present a comparison of different approaches for learning f...
متن کامل